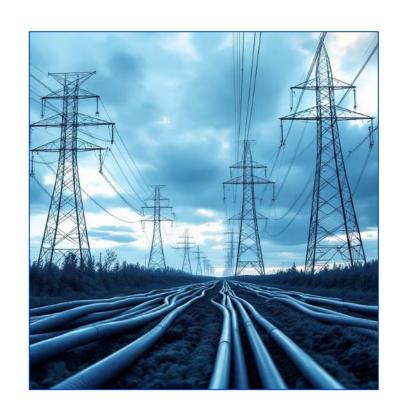


Linhas de Cabos Isolados de AT Lições aprendidas, desafios e melhores práticas para a confiabilidade do sistema

Palestrante: Carla Damasceno Peixoto



Agenda

- Desafios na Transmissão de Energia
- Comparativo Linhas Aéreas x Cabos Isolados
- > Fatores Decisivos Escolha de Alternativa
- Implantação e Desafios Linhas Cabos Isolados
- Mitigação dos Desafios
- Lições Aprendidas e Melhores Práticas

Desafios na Transmissão de Energia

Transição Energética

Adaptação às novas demandas e tecnologias sustentáveis

Complexidade Urbana

Crescente densidade populacional e restrições de espaço

Eventos Climáticos

Tendências
climáticas
extremas
afetando
especialmente as
linhas aéreas

Comparativo - Linhas Aéreas vs. Cabos Isolados

Critério	Linhas Aéreas	Linhas Cabos Isolados
Segurança Pública	Mais exposta	Mais protegida
Custo Inicial	Mais baixo	Mais alto (~5 a 10 vezes)
Flexibilidade	Maior	Menor
Quant. Falhas /	Mais propenso a falhas	Raro
Localização / Reparo	Facilitada	Complexa localização e reparo
Impacto Visual	Significativo	Infraestrutura não aparente
Capacidade Corrente (= seção conductor)	Maior	Menor
Reatância	Maior reatância indutiva	Maior reatância capacitiva

Fatores Decisivos na Escolha de Alternativa

Sistema Aéreo

Economia (baixo custo inicial e manutenção simples)
Aplicação: áreas rurais, industriais, ou onde o custo é determinante

Sistema Subterrâneo

Segurança, impacto ambiental reduzido e pressão pública

Aplicação: áreas urbanas densas, travessias críticas, zonas sensíveis e exigência legal

MEDIÇÃO DO CAMPO MAGNÉTICO

od BO 2 1.8

od BO 2 1.8

Medição no nível do solo

Medição 1m acima do nível do solo

Implantação de Linhas Cabos Isolados

Atividades principais

- Coleta dos parâmetros elétricos do sistema
- Escolha da rota
- Projeto básico do licenciamento ambiental
- Levantamento da área p/ transposição de obstáculos
- Projeto do cabo e especificações acessórios/aterramento
- Definição e projeto da infraestrutura civil
- Projetos licenciamento municipal uso de áreas públicas

Implantação de Linhas Cabos Isolados

Isolamento - polietileno reticulado (XLPE) - maior resistência térmica, dielétrica e mecânica.

Tipos de instalação - diretamente enterrados, dutos, canaleta, ponte e túneis

Classes de tensão - AT 69 a 230 kV EAT 345 a 500 kV e UAT >500 kV

Parâmetros Elétricos

Tensão, frequência, fator de carga, NBI
Temperatura média ambiente/solo/ar
Capacidade regime normal/emergência
Corrente curto circuito
Tempo atuação proteção
Condição de operação

Principais Desafios Linhas Cabos Isolados

Dissipação Térmica

Capacidade de dissipação de calor control cont

Infraestrutura Civil Complexa

Interferências redes públicas (redes de água, esgoto, gás, telecom. e etc.) e outras redes de energia Transposição de trechos subaquáticos/ submarinos, vias de grande movimento e ferrovias

Instalação de Cabos e Acessórios

Montadores capacitados e homologados

Custo Elevado

5 a 10 vezes maior que o de linhas aéreas

Localização e reparo de falhas

Dificuldade de acesso em caso de falha. Tempo de reparo geralmente + longo que LA Testes e diagnósticos - equipamentos sofisticados

Capacitância

Aumenta com o comprimento da linha pode necessitar de compensação

Mitigação dos Desafios

Detalhamento da Área

Definição da rota mapeamento completo interferências no subsolo

Planejamento/Projeto

Definição cuidadosa infraestrutura civil (caminho crítico), cabo, acessórios e aterramento

Estratégias

Execução obra civil em trechos - mais de uma frente de obra Equipes certificadas Rotina manutenção c/inspeções periódicas, monitoramento online

Planos de Contingência

Desenvolvimento protocolos p/ resposta ágil na localização e reparo das falhas Estoque sobressalentes (cabos, emendas e terminais) Contratos de alocação temporária de recursos c/ equipes certificadas

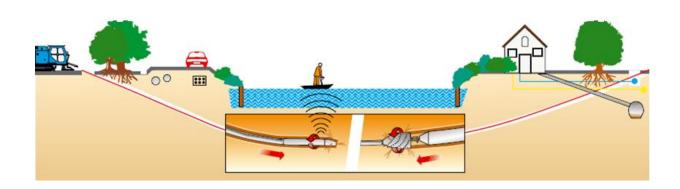
Interligação de Subestações / Trafos / Banco capacitores

Compactas – SF6

Convencionais

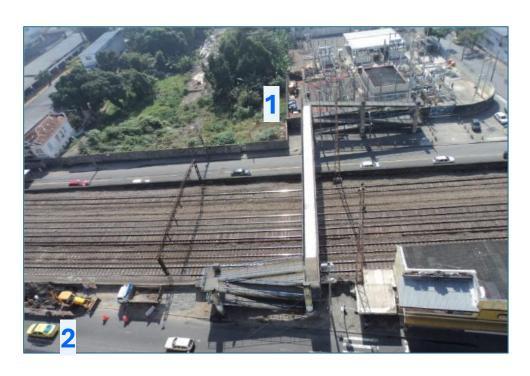
Infraestrutura civil - método convencional

Escavação - vala em vias públicas Concretagem - banco de dutos



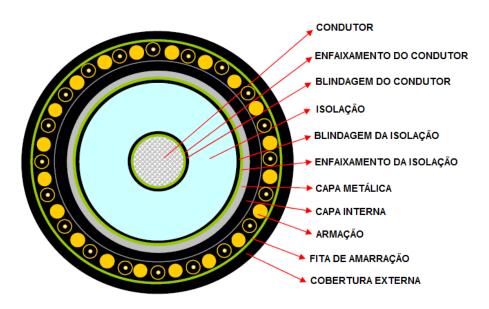
Infraestrutura civil - método não destrutivo

Transposição de obstáculos Perfuração horizontal direcional (HDD)



Infraestrutura civil - método não destrutivo

Transposição de obstáculos Perfuração horizontal direcional (HDD)



Linhas submarinas

Instalação de cabos Recobrimento cabos nas margens

Caixas de emendas

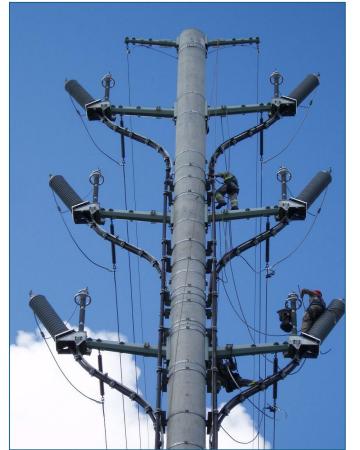
Concreto armado c/acesso Diretamente enterrada

Terminais

Entrada em Blindada SF6

Linhas Mistas

Enterramento trecho intermediário das linhas aéreas



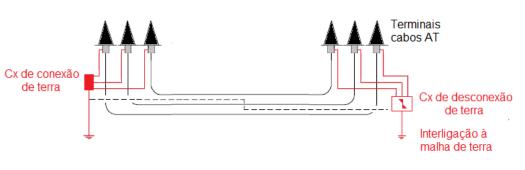
Linhas Mistas

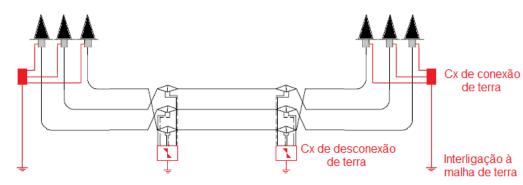
Enterramento trecho - chegada na SE

Linhas de Alta Tensão - CC

Obra em andamento

2 elos de corrente contínua 1 x 500 km e 1 x 700 km 2 x 2.000 MW 3.000 mm² Cu / XLPE / 525 kV


Aterramento


Atenuação das perdas elétrica na blindagem metálica p/ aumentar ampacidade da linha

Terminais cabos AT

Cx de conexão de terra

Interligação à malha de terra

Diretamente aterrado

Aterrado em 1 das extremidades: "single point bonding"

Aterramento com transposição:"cross bonding"

Sistemas de Monitoramento e Diagnóstico

Т	IPO	MONITORA	PRINCIPAIS VANTAGENS
DTS	/RTTR	Real-Time Thermal Rating	Identificação pontos quentes Calcula a capacidade da linha em tempo real Ajuda na localização da falha
D	ΙΔς	Vibrações ao redor do cabo	Identificação ações de terceiros, escavações, impactos e vandalismo Ajuda na localização da falha
DTSS	Listributed lemberature & Strain Sensing	Identifica intensidade da deformação da fibra ótica interna ao cabo e consequentemente do cabo (submarino)	
F	PD	Descargas parciais	Diagnóstico de defeitos na isolação do cabo e acessórios
Т	DR	Refletividade ao longo do cabo	Localiza falhas ou anomalias pontuais

Comissionamento

- Verificação do faseamento/continuidade
- Teste integridade capa externa do cabo
- Verificação do aterramento
- Teste de Alta Tensão em CA
- Medição de Descargas Parciais
- Testes das fibras óticas
- Testes sistemas de monitoramento

Manutenção Preventiva

- Inspeção visual regular (rota)
- Termografia
- Integridade capa externa / aterramento
- Monitoramento em tempo real
- Verificação ação de descargas parciais
- Equipe técnica certificada

antecipar falhas, reduzir riscos, aumentar a vida útil e otimizar os custos de manutenção

Manutenção Corretiva

- Sistemas monitoramento ajudam na localização da falha
- Inspeção na rota
- Reflectometria no domínio do tempo (TDR)
- Acessórios sobressalentes em estoque
- Equipe técnica certificada

Grata pela atenção!

Carla Damasceno Peixoto carladampe@gmail.com

